Evaluating land management practices for improving sediment retention and water supply ecosystem services in Rilán Peninsula, Chiloé Archipelago, Chile

Laia Mallén*, Gonzalo Vergara²,³, Adrian Vogl⁴ & Alvaro Montaña⁵

* Centro de Estudio y Conservación del Patrimonio Natural – Araucanía, Chile
² Instituto de Geografía, Facultad de Historia, Geografía y Ciencias Políticas, Pontificia Universidad Católica de Chile, Santiago, Chile
³ The Natural Capital Project, Woods Institute for the Environment, Stanford University, Stanford, CA, USA
⁴ Corresponding author. Email: adrian.vogl@stanford.edu

Introduction

Laminar erosion and water scarcity are two critical challenges facing the Chiloé Archipelago in southern Chile, affecting ecosystem services to rural families and others. The area is experiencing rapid deforestation and ongoing land clearing for timber extraction and ranching is increasing the pressure on local communities, at expenses of native forest (Arenas, Andrade, & Qüense, 2001). People in the Archipelago rely on healthy soils to provide ecosystem services such as productivity (for small-scale farming) and regulating seasonal water supply. Given that water use in this area is primarily from surface and shallow subsurface waters, erosion, soil loss, and the resulting loss in soil water storage capacity directly impact the availability of water to users.

Objectives

This study aims to: (a) evaluate current soil erosion and dry season water availability; (b) link soil erosion and water scarcity to landscape condition and other external parameters; and (c) provide a prioritization guide to decision makers that identifies priority areas to intervene with soil and water conservation activities, in order to promote better management decisions.

Methodology

Soil erosion and water availability were modeled in small coastal watersheds in the Rilán Peninsula, an area highly affected by anthropogenic impacts. Soil erosion was modeled using the InVEST Sediment Retention model (The Natural Capital Project, 2015) and water availability was modeled using the SWAT hydrology model (Nearing, Arnold, & Kiyi, 2011). To develop a prioritization scheme for determining which watersheds will most benefit from soil and water conservation activities, we will use the Analytic Hierarchy Process (AHP; Saaty, 2008). This method assumes that factors will contribute uniquely to the process analyzed, and one should represent the relative importance of each parameter. In the AHP, we will consider our model results as well as other parameters related to soil erosion and water availability: Land cover; Anthropogenic intervention on landscape (Steinhardt et al., 1999). Water supplied by Municipalities, and Soil infiltration capacity (Hydropod). This process analyzes the relative weights of every parameter with respect to the others to generate the individual contribution to the soil erosion and water shortage. The result of applying the AHP method will be a selection of prioritized watersheds where we will apply the BIOS model (Vogl et al., 2015), a tool which supports the design of cost-effective investments in watershed services.

Results

Spatial analysis of both erosion and SWAT models show extreme values in the northern area of study; the highest values of soil erosion, as well as retention; and the highest values of water yield and water flows during the dry season in Rilán peninsula. The northern part is one of the most populated areas of the peninsula. However, there are also some high-density areas in the south and south-east zones, where water is much scarcer and we also see very high erosion values.

From the modeling results, it cannot be concluded that land use is a determining factor for the water availability in the area. This might be related to the fact that the SWAT model is not only considering land use, but it is also very sensitive to soil characteristics. Precipitation is neither a determining parameter, as it appears to be similarly distributed through the whole area. Thus, results might need a deeper analysis on soil parameters.

Next steps

Once the results are further analyzed, individual parameter weights related to soil erosion and water scarcity are going to be determined through the AHP method. This will lead to a watershed prioritization, identifying priority watersheds for application of the BIOS model. Finally, the results provided by BIOS will be a guide to improve the decision-making process, identifying the best locations for protection and restoration activities in order to maximize the ecological return on investment, within the bounds of what is socially and politically feasible.

Erosion model results have already been delivered to the Ministry of Agriculture (MINAGRI), so the Institute of Agricultural Development (INDAP) is aware of the problem relevance and is able to consider changes in their planning. The Chilean government has financial resources assigned for the restoration of degraded soils. Since Chiloé is one of the FAO’s Globally Important Agricultural Heritage Sites (GIASHs) of the world, this study is relevant to the discussion of whether to assign some of these resources to Chiloé and to start existing soil restoration plans in the archipelago. At the moment, the plan has gotten approval from the regional technical team, and the islands are waiting for the national level authorization.

Water yield results can be the basis for future water policies since they show critical areas where to prioritize interventions. Applying BIOS modeling management practices will be suggested in order to improve soil quality, water flows and groundwater recharge in those areas. Since the management activities considered in BIOS will be the ones considered in the Forestry National Corporation (CONAF) and the Institute of Agricultural Development programs, an application of BIOS results in their planning seems feasible.

Coastal areas in Chiloé are defined as highly intervened and dynamic spaces (Arenas, Andrade, & Qüense, 2001), which is another reason for prioritizing the implementation of conservation and restoration actions on watersheds providing ecosystem services, such as of old-growth forest areas (Guiterrez et al., 2009).

References


Conclusions

To summarize, this study has brought to a decision making area the importance of soil loss and water availability in the Rilán Peninsula. This region suffers from severe deforestation, land clearing, and erosion affecting soil and water availability. The next steps of this research will be the implementation of soil and water conservation activities and the prioritization of future planning in these areas.